Opinions on Perpendicular

Here you have a list of opinions about Perpendicular and you can also give us your opinion about it.
You will see other people's opinions about Perpendicular and you will find out what the others say about it.
Also, you will see opinions about other terms. Do not forget to leave your opinion about this topic and others related.

For other uses, see Perpendicular (disambiguation).

In elementary geometry, the property of being perpendicular (perpendicularity) is the relationship between two lines which meet at a right angle (90 degrees). The property extends to other related geometric objects.

A line is said to be perpendicular to another line if the two lines intersect at a right angle. Explicitly, a first line is perpendicular to a second line if (1) the two lines meet; and (2) at the point of intersection the straight angle on one side of the first line is cut by the second line into two congruent angles. Perpendicularity can be shown to be symmetric, meaning if a first line is perpendicular to a second line, then the second line is also perpendicular to the first. For this reason, we may speak of two lines as being perpendicular (to each other) without specifying an order.

Perpendicularity easily extends to segments and rays. For example, a line segment \overline{AB} is perpendicular to a line segment \overline{CD} if, when each is extended in both directions to form an infinite line, these two resulting lines are perpendicular in the sense above. In symbols, \overline{AB} \perp \overline{CD} means line segment AB is perpendicular to line segment CD. The point B is called a foot of the perpendicular from A to segment \overline{CD}, or simply, a foot of A on \overline{CD}.

A line is said to be perpendicular to a plane if it is perpendicular to every line in the plane that it intersects. Note that this definition depends on the definition of perpendicularity between lines.

Two planes in space are said to be perpendicular if the dihedral angle at which they meet is a right angle (90 degrees).

Perpendicularity is one particular instance of the more general mathematical concept of orthogonality; perpendicularity is the orthogonality of classical geometric objects. Thus, in advanced mathematics, the word "perpendicular" is sometimes used to describe much more complicated geometric orthogonality conditions, such as that between a surface and its normal.

In the image below, you can see a graph with the evolution of the times that people look for Perpendicular. And below it, you can see how many pieces of news have been created about Perpendicular in the last years.
Thanks to this graph, we can see the interest Perpendicular has and the evolution of its popularity.

What do you think of Perpendicular?

You can leave your opinion about Perpendicular here as well as read the comments and opinions from other people about the topic.
It's important that all of us leave our opinions about Perpendicular to have a better knowledge about it: