# Opinions on Deformation (mechanics)

Here you have a list of opinions about Deformation (mechanics) and you can also give us your opinion about it.
You will see other people's opinions about Deformation (mechanics) and you will find out what the others say about it.
Also, you will see opinions about other terms. Do not forget to leave your opinion about this topic and others related.

Deformation in continuum mechanics is the transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body.

A deformation may be caused by external loads, body forces (such as gravity or electromagnetic forces), or changes in temperature, moisture content, or chemical reactions, etc.

Strain is a description of deformation in terms of relative displacement of particles in the body that excludes rigid-body motions. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.

In a continuous body, a deformation field results from a stress field induced by applied forces or is due to changes in the temperature field inside the body. The relation between stresses and induced strains is expressed by constitutive equations, e.g., Hooke's law for linear elastic materials. Deformations which are recovered after the stress field has been removed are called elastic deformations. In this case, the continuum completely recovers its original configuration. On the other hand, irreversible deformations remain even after stresses have been removed. One type of irreversible deformation is plastic deformation, which occurs in material bodies after stresses have attained a certain threshold value known as the elastic limit or yield stress, and are the result of slip, or dislocation mechanisms at the atomic level. Another type of irreversible deformation is viscous deformation, which is the irreversible part of viscoelastic deformation.

In the case of elastic deformations, the response function linking strain to the deforming stress is the compliance tensor of the material.

In the image below, you can see a graph with the evolution of the times that people look for Deformation (mechanics). And below it, you can see how many pieces of news have been created about Deformation (mechanics) in the last years.
Thanks to this graph, we can see the interest Deformation (mechanics) has and the evolution of its popularity.

# What do you think of Deformation (mechanics)?

You can leave your opinion about Deformation (mechanics) here as well as read the comments and opinions from other people about the topic.
It's important that all of us leave our opinions about Deformation (mechanics) to have a better knowledge about it: